Differential Calculus in Banach Spaces

Fréchet and Gâteaux Derivatives

We begin nonlinear analysis of operators with definitions of differentiation. Let F(x) be a nonlinear operator acting from $D(F) \subset X$ to $R(F) \subset Y$, where X and Y are real Banach spaces. Assume D(F) is open.

Definition 3.1.1. F(x) is differentiable in the Fréchet sense at $x_0 \in D(F)$ if there is a bounded linear operator, denoted by $F'(x_0)$, such that

$$F(x_0 + h) - F(x_0) = F'(x_0)h + \omega(x_0, h)$$
 for all $||h|| < \varepsilon$

with some $\varepsilon > 0$, where $\|\omega(x_0, h)\|/\|h\| \to 0$ as $\|h\| \to 0$. Then $F'(x_0)$ is called the Fréchet derivative of F(x) at x_0 , and $dF(x_0, h) = F'(x_0)h$ is

its Fréchet differential. F(x) is Fréchet differentiable in an open domain $S \subset D(F)$ if it is Fréchet differentiable at every point of S.

Example Let $\Omega \subset \mathbb{R}^n$ be an open bounded domain. Denote by $C(\overline{\Omega})$ the continuous function space on $\overline{\Omega}$. Let

$$\varphi: \overline{\Omega} \times \mathbb{R}^1 \longrightarrow \mathbb{R}^1$$

be a C^1 function. Define a mapping $f:C(\overline{\Omega})\to C(\overline{\Omega})$ by

$$u(x) \mapsto \varphi(x, u(x))$$
.

Then f is F-differentiable, and $\forall u_0 \in C(\overline{\Omega})$,

$$(f'(u_0)\cdot v)(x) = \varphi_u(x, u_0(x))\cdot v(x) \quad \forall v \in C(\overline{\Omega}).$$

Proof. $\forall h \in C(\overline{\Omega})$

$$t^{-1}[f(u_0 + th) - f(u_0)](x) = \varphi_u(x, u_0(x) + t\theta(x)h(x))h(x) ,$$

where $\theta(x) \in (0,1)$. $\forall \varepsilon > 0$, $\forall M > 0$, $\exists \delta = \delta(M, \varepsilon) > 0$ such that

$$|\varphi_u(x,\xi) - \varphi_u(x,\xi')| < \varepsilon, \ \forall x \in \overline{\Omega},$$

as $|\xi|$, $|\xi'| \leq M$ and $|\xi - \xi'| \leq \delta$. We choose $M = ||u_0|| + ||h||$, then for $|t| < \delta < 1$,

$$|\varphi_u(x, u_0(x) + t\theta(x)h(x)) - \varphi_u(x, u_0(x))| < \varepsilon$$
.

It follows that $df(u_0, h)(x) = \varphi_u(x, u_0(x))h(x)$.

Problem Assume y = f(x) is a vector function from \mathbb{R}^m to \mathbb{R}^n and $f(x) \in (C^{(1)}(\Omega))^n$. Show that its Fréchet derivative at $x_0 \in \Omega$ is the Jacobi matrix $\left(\frac{\partial f_i(x_0)}{\partial x_j}\right)_{\substack{i=1,...,n\\j=1,...,m}}$.

Definition Assume that for all $h \in D(F)$ we have

$$\lim_{t \to 0} \frac{F(x_0 + th) - F(x_0)}{t} = DF(x_0, h), \qquad x_0 \in D(F),$$

where $DF(x_0, h)$ is a linear operator with respect to h. Then $DF(x_0, h)$ is called the Gâteaux differential of F(x) at x_0 , and the operator is called Gâteaux differentiable. Denoting $DF(x_0, h) = F'(x_0)h$, we get the Gâteaux derivative $F'(x_0)$. An operator is differentiable in the Gâteaux sense in an open domain $S \subset X$ if it has a Gâteaux derivative at every point of S.

The definitions of derivatives are clearly valid for functionals. Suppose $\Phi(x)$ is a functional which is Gâteaux differentiable in a Hilbert space and that $D\Phi(x, h)$ is bounded at $x = x_0$ as a linear functional in h. Then, by the Riesz representation theorem, it can be represented in the form of an inner product; denoting the representing element by grad $\Phi(x_0)$, we get

$$D\Phi(x_0, h) = (\operatorname{grad} \Phi(x_0), h).$$

By this, we have an operator grad $\Phi(x_0)$ called the *gradient* of $\Phi(x)$ at x_0 .

Theorem If an operator F(x) from X to Y is Fréchet differentiable at $x_0 \in D(F)$, then F(x) is Gâteaux differentiable at x_0 and the Gâteaux derivative coincides with the Fréchet derivative.

Theorem Suppose that $f: U \to Y$ is G-differentiable, and that $\forall x \in U$, $\exists A(x) \in L(X,Y)$ satisfying

$$df(x,h) = A(x)h \quad \forall h \in X.$$

If the mapping $x \mapsto A(x)$ is continuous at x_0 , then f is F-differentiable at x_0 , with $f'(x_0) = A(x_0)$.

Proof. With no loss of generality, we assume that the segment $\{x_0 + th \mid t \in [0,1]\}$ is in U. According to the Hahn–Banach theorem, $\exists y^* \in Y^*$, with $\parallel y^* \parallel = 1$, such that

$$|| f(x_0+h)-f(x_0)-A(x_0)h||_{Y}=\langle y^*,f(x_0+h)-f(x_0)-A(x_0)h\rangle$$
.

Let

$$\varphi(t) = \langle y^*, f(x_0 + th) \rangle$$
.

From the mean value theorem, $\exists \xi \in (0,1)$ such that

$$|\varphi(1) - \varphi(0) - \langle y^*, A(x_0)h \rangle| = |\varphi'(\xi) - \langle y^*, A(x_0)h \rangle|$$

$$= |\langle y^*, df(x_0 + \xi h, h) - A(x_0)h \rangle|$$

$$= |\langle y^*, [A(x_0 + \xi h) - A(x_0)]h \rangle|$$

$$= \circ(||h||),$$

i.e.,
$$f'(x_0) = A(x_0)$$
.

Example Let X be a Hilbert space, with inner product (,). Find the F- derivative of the norm f(x) = ||x||, as $x \neq \theta$.

High-Order Derivatives

The second-order derivative of f at x_0 is defined to be the derivative of f'(x) at x_0 . Since $f': U \to L(X,Y)$, $f''(x_0)$ should be in L(X,L(X,Y)). However, if we identify the space of bounded bilinear mappings with L(X,L(X,Y)), and verify that $f''(x_0)$ as a bilinear mapping is symmetric, see Theorem 1.1.9 below, then we can define equivalently the second derivative $f''(x_0)$ as follows: For $f: U \to Y$, $x_0 \in U \subset X$, if there exists a bilinear mapping $f''(x_0)(\cdot, \cdot)$ of $X \times X \to Y$ satisfying

$$|| f(x_0+h)-f(x_0)-f'(x_0)h-\frac{1}{2}f''(x_0)(h,h)|| = o(||h||^2) \quad \forall h \in X, \text{ as } ||h|| \to 0,$$

then $f''(x_0)$ is called the second-order derivative of f at x_0 .

By the same manner, one defines the mth-order derivatives at x_0 successively: $f^{(m)}(x_0): X \times \cdots \times X \to Y$ is an m-linear mapping satisfying

$$\left\| f(x_0 + h) - \sum_{j=0}^m \frac{f^{(j)}(x_0)(h, \dots, h)}{j!} \right\| = o(\|h\|^m),$$

as $||h|| \to 0$. Then f is called m differentiable at x_0 .

Theorem 1.1.9 Assume that $f: U \to Y$ is m differentiable at $x_0 \in U$. Then for any permutation π of $(1, \ldots, m)$, we have

$$f^{(m)}(x_0)(h_1,\ldots,h_m)=f^{(m)}(x_0)(h_{\pi(1)},\ldots,h_{\pi(m)}).$$

Theorem (Taylor formula) Suppose that $f: U \to Y$ is continuously m-differentiable. Assume the segment $\{x_0 + th \mid t \in [0,1]\} \subset U$. Then

$$f(x_0 + h) = \sum_{j=0}^{m} \frac{1}{j!} f^{(j)}(x_0)(h, \dots, h)$$
$$+ \frac{1}{m!} \int_0^1 (1 - t)^m f^{(m+1)}(x_0 + th)(h, \dots, h) dt.$$

Example $X = \mathbb{R}^n$, $Y = \mathbb{R}^1$. If $f: X \to Y$ is twice continuously differentiable, then

$$f''(x) = H_f(x) = \left(\frac{\partial^2 f(x)}{\partial x_i \partial x_j}\right)_{i,j=1,\dots,n}$$
.

Theorem (Mean Value Theorem)

If $f: X \longrightarrow Y$ is a Gâteaux differentiable function and $x, h \in X$, $y^* \in Y^*$, then we can find $\lambda_0 \in (0,1)$, such that

$$\langle y^*, f(x+h) - f(x) \rangle_Y = \langle y^*, f'_G(x+\lambda_0 h) h \rangle_Y$$

and

$$||f(x+h)-f(x)||_{Y} \leq ||f'_{G}(x+\lambda_{0}h)||_{\mathcal{L}} ||h||_{X}.$$

THEOREM (Implicit Function Theorem)

If X, Y, Z are three Banach spaces, $U \subseteq X \times Y$ is an open set, $(x_0, y_0) \in U$, $f: U \longrightarrow Z$ is a continuous differentiable function, $f(x_0, y_0) = 0$ and $D_2 f(x_0, y_0) \in \mathcal{L}(X; Y)$ is invertible with a continuous inverse,

i.e., $D_2 f(x_0, y_0)$ is an isomorphism, then there exist neighbourhoods U_1 of x_0 and U_2 of y_0 , such that $U_1 \times U_2 \subseteq U$ and a unique continuously differentiable function $g: U_1 \longrightarrow U_2$, such that

$$f(x,g(x)) = 0 \quad \forall x \in U_1$$

and

$$Dg(x) = -(D_2f(x,g(x)))^{-1}D_1f(x,g(x)) \quad \forall x \in U_1.$$

consider an operator equation with a parameter μ being an element of a real Banach space M:

$$F(x,\mu) = 0$$

where $D(F(x,\mu)) \subseteq X$, $R(F(x,\mu)) \subseteq Y$.

Theorem Assume an operator F(x) from X to Y has a Fréchet derivative at $x = x_0$, and an operator x = S(z) from a real Banach space Z to X also has a Fréchet derivative $S'(z_0)$ and $x_0 = S(z_0)$. Then their composition F(S(z)) has a Fréchet derivative at $z = z_0$ and

$$(F(S(z_0)))' = F'(x_0)S'(z_0).$$

Proof. Substituting

$$x - x_0 = S(z) - S(z_0) = S'(z_0)(z - z_0) + \omega_1(z_0, z - z_0)$$

into

$$F(x) - F(x_0) = F'(x_0)(x - x_0) + \omega(x_0, x - x_0),$$

we get

$$F(x) - F(x_0) = F'(x_0)S'(z_0)(z - z_0) + F'(x_0)\omega_1(z_0, z - z_0) + \omega(x_0, S(z) - S(z_0)).$$

Lyapunov–Schmidt Reduction

Let X, Y be Banach spaces, and let \wedge be a topological space. Assume that $F: U \times \wedge \to Y$ is continuous, where $U \subset X$ is a neighborhood of θ . We assume that $F_x(\theta, \lambda_0)$ is a Fredholm operator, i.e.,

- (1) Im $F_x(\theta, \lambda_0)$ is closed in Y,
- (2) $d = \dim \ker F_x(\theta, \lambda_0) < \infty$,
- (3) $d^* = \operatorname{codim} \operatorname{Im} F_x(\theta, \lambda_0) < \infty$.

Set

$$X_1 = \ker F_x(\theta, \lambda_0), Y_1 = \operatorname{Im} F_x(\theta, \lambda_0).$$

Since both dim X_1 , and codim Y_1 are finite, we have the direct sum decompositions:

$$X = X_1 \oplus X_2, Y = Y_1 \oplus Y_2,$$

and the projection operator $P: Y \to Y_1$. $\forall x \in X$, there exists a unique decomposition:

$$x = x_1 + x_2, x_i \in X_i, i = 1, 2$$
.

Thus

$$F(x,\lambda) = \theta \Leftrightarrow \begin{cases} PF(x_1 + x_2, \lambda) = \theta, \\ (I - P)F(x_1 + x_2, \lambda) = \theta. \end{cases}$$

Now, $PF_x(\theta, \lambda_0): X_2 \to Y_1$ is a surjection as well as an injection. According to the Banach theorem, it has a bounded inverse. If we already have $F(\theta, \lambda_0) = \theta$, then from the IFT, we have a unique solution

$$u:V_1\times V\to V_2$$

satisfying

$$PF(x_1 + u(x_1, \lambda), \lambda) = \theta$$
,

where V_i is a neighborhood of θ in $U \cap X_i$, i = 1, 2, and V is a neighborhood of λ_0 .

It remains to solve the equation:

$$(I - P)F(x_1 + u(x_1, \lambda), \lambda) = \theta$$

on $V_1 \times V$. This is a nonlinear system of d variables and d^* equations.

The above procedure is called the Lyapunov–Schmidt reduction.

Definition (x_0, μ_0) is a bifurcation point of the equation $F(x, \mu) = 0$ if for any r > 0, $\rho > 0$, in the ball $\|\mu - \mu_0\| \le \rho$ there exists μ such that in the ball $\|x - x_0\| \le r$ there are at least two solutions of the equation corresponding to μ .

Example The point (0,0) is a bifurcation point for the ordinary differential equation

$$u'' + \lambda(u + u^3) = 0$$

subject to the periodic boundary conditions

$$u(0) = u(2\pi), \quad u'(0) = u'(2\pi).$$

Theorem If the point $(0, \lambda_0)$ is a bifurcation point for the equation

$$F(u,\lambda) = 0,$$

then the Fréchet derivative $F_u(0, \lambda_0)$ cannot be a linear homeomorphism of X to Y.