Differential Calculus in Banach Spaces

Fréchet and Gateaux Derivatives

We begin nonlinear analysis of operators with definitions of differentiation.

Let F(zx) be a nonlinear operator acting from D(F) C X to R(F) C Y,
where X and Y are real Banach spaces. Assume D(F) is open.

Definition 3.1.1. F(z) is differentiable in the Fréchet sense at g € D(F)
if there is a bounded linear operator, denoted by F’(zg), such that

F(zg+ h) — F(x¢) = F'(z¢)h + w(zg, k) for all ||h|| < =

with some £ > 0, where ||w(zg, h)||/||k|]| — 0 as ||k]| = 0. Then F'(zg) is
called the Fréchet derivative of F(z) at zg, and dF(zg,h) = F'(xo)h is

its Fréchet differential. F(x) is Fréchet differentiable in an open domain
S C D(F) if it is Fréchet differentiable at every point of S.

Erample Let Q@ € R™ be an open bounded domain. Denote by C() the
continuous function space on 2. Let

p: QxR — R!



be a C' function. Define a mapping f : C(Q) — C(Q) by

u(z) = o(z,u(r)) .
Then f is F-differentiable, and Yuo € C(9),
(f'(uo0) - v)(2) = pu(z,u0(2)) -v(z) Vv eEC(Q).
Proof. Yh € C(Q)
t="[f(uo + th) — f(uo)](z) = pu(, uo(x) + to(z)h(z))h(z) ,
where 0(z) € (0,1). Ve > 0, VM > 0, 30 = 6(M, <) > 0 such that
| pu(z,€) — pu(z,€') I<e, VT €Q,

as |&|, [£¢'| < M and (£ — &'| < . We choose M =|| ug || + || h ||, then for
it <d <1,

|ou(z, uo(x) + to(xz)h(x)) — wul(z,uo(x))| < €.

It follows that df (uo, h)(z) = @u(z, ue(z))h(zx).



Problem Assume y = f(x) is a vector function from R™ to R™ and

f(x) € (C'V(Q))". Show that its Fréchet derivative at xo € €2 is the Jacobi
afy (xo))
i=1 n’

matnx ( z,

j=1,..., m

Definition Assume that for all h € D(F') we have

. F(xzg+th) — F(xq)
lim
t—0 t

= DF(xo,h), xg € D(F),

where DF(zo,h) is a linear operator with respect to h. Then DF(xzo,h)
is called the Gateaux differential of F(x) at xp, and the operator is called
Gateaux differentiable. Denoting DF (xg,h) = F'(xg)h, we get the Gateaux
derivative F'(xg). An operator is differentiable in the Gateaux sense in an
open domain S C X if it has a Gateaux derivative at every point of S.

The definitions of derivatives are clearly valid for functionals. Suppose
®(x) is a functional which is Gateaux differentiable in a Hilbert space and
that D®(x, h) is bounded at £ = zg as a linear functional in h. Then, by
the Riesz representation theorem, it can be represented in the form of an
inner product: denoting the representing element by grad ®(z¢). we get

D®(xo, h) = (grad ®(xo), h).



By this, we have an operator grad ®(z¢) called the gradient of ®(z) at xp.

Theorem If an operator F(z) from X to Y is Fréchet differentiable

at g € D(F'), then F(z) is Gateaux differentiable at x5 and the Gateaux
derivative coincides with the Fréchet derivative.

Theorem Suppose that f : U — Y is G-differentiable, and that YV <
U, JA(z) € L(X,Y) satisfying
df(z,h) = A(x)h VYVhe X .
If the mapping x — A(zx) is continuous at xo, then f is F-differentiable at xg,

with f'(xo) = A(xo).

Proof. With no loss of generality, we assume that the segment {zo + th |
t € [0,1]} is in U. According to the Hahn-Banach theorem, Jy* € Y*, with
| y* ||= 1, such that

I f(zo +h) — f(zo) — A(zo)h [[y= (¥", f(zo + ) — f(20) — Alz0)h) .



Let
o(t) = (y", f(zo + th)) .
From the mean value theorem, 3¢ € (0, 1) such that

[ o(1) = ¢(0) — (¥, A(zo)R) | = [ ¢'(£) — (y", A(zo)h) |

(", df (xo + &, h) — A(z0)h)) |
(", [A(zo + &h) — A(zo)]h) |
=o([[~ 1)),

i.e., f'(zo) = A(zo).

Exrample Let X be a Hilbert space, with inner product (,). Find the
F- derivative of the norm f(z) = || z ||, as = # 6.



High-Order Derivatives

The second-order derivative of f at xq is defined to be the derivative of f'(z)
at xg. Since ' : U — L(X,Y), f”(z0) should be in L(X,L(X,Y)). However,
if we identify the space of bounded bilinear mappings with L(X,L(X,Y)),
and verify that f”(zq) as a bilinear mapping is symmetric, see Theorem 1.1.9
below, then we can define equivalently the second derivative f”(z¢) as follows:
For f:U —Y, zo € U C X, if there exists a bilinear mapping f"(zo)(-,-) of
X x X — Y satisfying

[ f(l'o-i-h)—f(ﬂ?o)—f’(l‘o)h—%f”(fo)(h, h) |=o(|[h]*) YheX,as|h|-0,

then f”(z¢) is called the second-order derivative of f at xy.
By the same manner, one defines the mth-order derivatives at zo succes-
sively: ™) (zg) : X x --- x X — Y is an m-linear mapping satisfying

f(fl?o-l-h)—z il

@) (z)(h, ...,
ACHICERID] EVTYLON

j=0

as || A ||— 0. Then f is called m differentiable at xy.



Theorem 1.1.9 Assume that f : U — Y is m differentiable at xy € U. Then
for any permutation 7 of (1,...,m), we have

f(m)(IO)(hl, - hm) = f(m)(l'o)(hﬂ-(l), S hﬂ(m)) .

Theorem (Taylor formula) Suppose that f : U — Y is continuously
m-differentiable. Assume the segment {xo +th|t € [0,1]} C U. Then

fao+h) =Y =D (@o)(h, ... h
j=0 7’
1
n %/0 (1 — )™ £ (g 4 th)(h, ..., h)dt .

Example X = R™", Y =R'. If f : X — Y is twice continuously
differentiable, then

f(z) = Hy(z) = (g;fég)wa -

PR




Theorem (Mean Value Theorem)

If f: X —Y isa Gateaux differentiable function and x,h € X, y* € Y*,
then we can find \q € (0,1), such that

(" fx+h) = f(z)y = ¥ folx+roh)h)y
and
[f@@+m) = @)y < [lfa@+ bl 1R]x-
THEOREM (Implicit Function Theorem)
If X.,Y,Z are three Banach spaces, U C X xY 1is an open set, (xo,yo) € U,

f: U — Z is a continuous differentiable function, f(zq,y0) =0 and

Ds f(zg,y0) € L(X:;Y) is invertible with a continuous inverse,

i.e., Dy f(xo,y0) s an isomorphism,
then there exist neighbourhoods U, of xo and Uy of yo, such that Uy x Uy C U
and a unique continuously differentiable function g: Uy — Us, such that

flz,g(z)) = 0 VYazel

and

Dyglz) = —(sz(a:,g(a:)))_lle(:c,g(:c)) Vxel,.



consider an operator equation with a parameter g being an element
of a real Banach space M:

F(I!ﬂ) =0
where D(F(z,pn)) C X, R(F(z,u)) CY.

Theorem Assume an operator F(z) from X to Y has a Fréchet
derivative at x = z(, and an operator x = S(z) from a real Banach space
Z to X also has a Fréchet derivative S’(zg) and zg = S(20). Then their
composition F(S(z)) has a Fréchet derivative at z = zp and

(F(5(20)))" = F'(20)S5(20).
Proof. Substituting
z —x9 = S(2) — S(20) = 5'(20)(z — 20) + w1(20,2 — 20)

mto
F(z) — F(zo) = F'(z0)(z — x0) + w(x0,x — x0).
we get

F(x) — F(xz0) = F'(x0)S'(20)(z — 20) + F'(x0)w1(z20,2z — z0) +
+ w(zxo, S(z) — S(z0))-



Lyapunov—-Schmidt Reduction

Let X, Y be Banach spaces, and let A be a topological space. Assume that
F :U x AN — Y is continuous, where U C X 1is a neighborhood of 6. We
assume that F,(6, A\g) is a Fredholm operator, i.e.,

(1) Im F,(0, o) is closed in Y,
(2) d =dimker F,(0, \g) < o0,
(3) d* = codim Im F,(0, \g) < <.

Set
Xl = kerFx(ga /\0)9 }/1 = Im F:L‘(B- A0) .

Since both dim X, and codim Y, are finite, we have the direct sum decom-
positions:
X=X6X,,Y=Y,0Y,,

and the projection operator P : Y — Y,. Vo € X, there exists a unique
decomposition:
T =2+ Iy, 'TiGXia i=1,2.



Thus

PF(zy +x2,A\) =80,
Flz,\) =60 = (1 +22,3)
(I—P)F(II‘FIQ.A):G

Now, PF,(0,\o) : X2 — Y is a surjection as well as an injection. According to
the Banach theorem, it has a bounded inverse. If we already have F'(6, \o) = 6,
then from the IFT, we have a unique solution

u:Vi xV =V,
satisfying
PF(zy +u(z1,A),A) =6,

where V; is a neighborhood of 8 in U N X;,7i = 1,2, and V is a neighborhood
of )\0.

It remains to solve the equation:
(I — P)F(x1 +u(z1,A\),\) =86

on V; x V. This is a nonlinear system of d variables and d* equations.

The above procedure is called the Lyapunov-Schmidt reduction.



Definition (xq, ) is a bifurcation point of the equation F(z,u) = ()
if for any r > 0, p > 0, in the ball ||z — pgl| < p there exists p such that

in the ball ||z — zg|| < r there are at least two solutions of the equation
corresponding to f.

Example The point (0,0) is a bifurcation point for the ordinary differential
equation

u + Au+u’)=0
subject to the periodic boundary conditions

u(0) = u(27), u'(0)=u'(2=).

Theorem If the point (0, \g) is a bifurcation point for the equation
F(u,\) =0,

then the Fréchet derivative F, (0, \y) cannot be a linear homeomorphism of X
toY.



